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Abstract—Using the method of associated matrices, Galerkin-type representations are constructed for the
polarization vector P and the scalar potential ¢ in a dielectric solid. The representations are used to
determine (P, ¢) due to a point charge in an infinite dielectric solid. Expressions for (P, ¢) are constructed
for an ideal dipole, quadrupole and an octapole. By distribution of these multipole singularities with suitable
densities along the line segment joining the focii of the spheroid an exact expression for the dielectric
displacement caused by a charge distribution over its surface is determined using the singularity method.

INTRODUCTION

Recent years have witnessed application of the singularity method to the construction of a large
number of exact solutions to displacement-type boundary value problems for an infinite
isotropic medium with spheriodal cavities[1] and various types of Stokes flows over axisym-
metric bodies in hydromechanics[2]. The method consists of deriving Kelvin-type solutions and
then obtaining solutions for higher order point singularities, known as doublets, centres of
dilatation and rotation, stokeslets, stresslets, rotlets, and distributing these singularities, with
appropriate densities, along a finite segment of the axis of symmetry of the body to obtain
explicit results through integral representation for the unknown displacement. The method has
been extended to obtain exact closed form solutions in other areas of mathematical physics,
such as magnetostatics, potential theory and scattering of low frequency electromagnetic and
acoustic waves[3]. Body shapes treated include spheres, prolate and oblate spheroids, dumb-
bells and forms generated by a surface of revolution. Compared to the boundary value method,
where one encounters overwhelmingly complex analytical difficulties, the singularity technique
is simple, elegant and allows exact solutions to boundary value problems to be obtained with
ease and in a straightforward logical manner.

In the present work, the application of the singularity method is extended to dielectric
materials [4). Kelvin-type solutions for the polarization vector P and scalar potential field ¢ are
constructed for a point charge in an infinite dielectric solid using the method of associated
matrices 5] and rederiving the solution given in[4]. Point singularities, such as ideal doublets,
quadrupoles and octapoles with one, two and three directors, respectively, are generated from
the basic point charge solution. Solutions are constructed for both the classical theory of
dielectrics as well as for Mindlin’s equations which take into account the contribution of the
polarization gradient to the stored energy function. Using these multipole point singularities
with appropriate densities, an integral representation for the dielectric displacement due to a
charge distribution on the surface of the spheroidal cavity in an infinite dielectric material is
constructed for a rigid dielectric and an exact solution in terms of elementary functions
obtained. The total surface charge is determined by parametrizing the surface of the spheriodal
cavity. Detailed explicit evaluations of integrals used in the text are given in appendices.

2. THE BASIC EQUATIONS

Let a homogeneous isotropic centro-symmetric dielectric material occupy a region V whose
boundary S separates it from outer vacuum V'. Introduce a rectangular Cartesian coordinate
system, x;.

The basic equations developed in{4] reduce to the equations of equilibrium

Eﬂj+£’Ei’¢j=0 (2.1a)
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€di—-P,=-p.inV 2.1b)
¢i=0inV (2.1¢)
the constitutive laws

LEi= —i;—;-/i:= —eo'n'P; (2.2)
i =35 = BisiPus +BaPi+ P+ BPu - P) 23

and the boundary conditions
mE;=0 2.4)
nilP; — edfo i} = 6(x) (2.5)

where E;;, P,; denote the components of electric and polarization gradient tensors; LE;|¢ ./, n:
represent the components of local electric vector, jump in ¢, across S and the components of
unit normal vector to S respectively; n, €, 8(x), p., respectively, denote the dielectric
susceptibility, the permittivity of vacuum, the surface charge and the charge density and 8,, 8,
B are constants associated with the polarization gradient.

The stored energy of deformation and polarization depends on P; and P;; and is taken in the
form

WL(P,P.;) = 4ayPP; +4BiuPiiPix + yiuPiPi; 2.6)

in which for the case of isotropic centro-symmetric dielectric materials, the tensors a;, By and
Y are defined by

a; = 56‘1"160- (2.78)
Bix = B18ybu + B2Oudit + 8udy) + B3(Sudy — Sudjx) (2.7b)
YVik = 0 (27C)

where 3y is the Kronecker delta.
Eliminating E; and . E; from eqns (2.1a)}~(2.1c), (2.4) and (2.5), the following system of
equations and boundary conditions is obtained

(Be+B)V'P +(By+ By—B)VV - P—eg'n ' P -V =0 2.8)
-&V¢+V-P=+p (2.9)

BV P +28:ii - VP +(B,-Ba)ixVx P =0 (2.10)

i+ [P~ &|Ve|1 = 6(x) @11

3. GALERKIN'S REPRESENTATION AND POINT CHARGE
Let

X=5‘37 q=Xi+ X3+ X} 3.0)
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Xi 100 X} X1 X, X1 Xs
X= Xz . I=10 10 , Z= X;X, X§ sz:; (32)
X; 001 XX, XX, X}
and let L be a (4 X 4) matrix associated with eqns (2.8) and (2.9) which are thus rewritten in
P 0
TR
¢ +pe 33
where
OI+@+B-8Z -X1 5|5
L= [T B2 Pb ] B P, (3.4)
—€q P
)
and
Oy =[~-es'n"" +(B:+ By)q). (3.5)
Making use of the results
ZX=qX, Z'=qZ, X'X=q (3.6)
XX'=2, X'Z=gqX' 3.7

the inverse of the operator L is found to be

(I +@-THZ __1

where
B=(Bi+2B)q - €' (1+77). 39
From egns (3.3) and (3.8), one obtains
P = [V, + @ -D)W.16-Vy (3.10)
¢=0,7- - +e'ly (3.11
where ® and ¢ satisfy the equations
Vo008 =0 (3.12)
Vi = +€d'p (3.13)

Concentrated point charge

Let a concentrated point charge of strength p. = —41e 5(x) be located at the origin of the
rectangular coordinate system within an infinite dielectric solid.

Then ® =0, and eqn (3.13) reduces to

W(V’—},)w-—-—hrem 5(x) (3.14)
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where 8(x) is the Dirac delta function and

2 Bit28 1 1
1 —€6|(1+n_|),m_7§]+7’_|. (3.15)
The solution to eqn (3.14) is given by
1—¢ R
x{z=—el’m[ R ] Ri=xt+xi+13 (3.16)
where we have used
| 1
7 (—47é(x)] = R (3.17a)
1 e X
1 [~ 478(x)) =R (3.17b)

V-n

Substituting the expression for ¢ from eqn (3.16) into eqns (3.10) and (3.11), one obtains
expressions for the polarization vector P, and the potential ¢ due to a point charge (unipole
or 2°~pole) in the form

- _/1_ Rl
P'(f)=-ﬂf;v(' ; ) (3.18)
e E0€ I+31e'k”
‘“""Hn( R ) (3.19)

The dielectric displacement is found from eqns (3.18) and (3.19) and is given by

De(%)= Pt~ V¢ = — eV (%) (3.20)

which is seen to be independent of the dielectric constants. The expression for ¢ derived here
agrees with that obtained by Mindlin[4].

4. MULTIPOLES

In this section, expressions are derived for the potential field, polarization and dielectric
vectors for a non-ideal and an ideal dipole, quadrupole and octapole.

Dipole (2-pole)
Consider the point charges+e¢ and—e¢ located at the points with position vector F, and
Fo+ 4/, (Appendix A). Define
Strength of the dipole = e/, 4.1)
Moment of dipole = Y, e = — efo+ e(Fy + L i)
=el |ﬁ 1 (42)

2
Potential due to non-ideal dipole = Z. (P). 4.3)
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To find the potential due to an ideal dipole, let e > and /,~0 such that el, (= %*) remains
finite

(R )=+ 9 S (m ) (-’il’%-—) 4.4)
PP VRR T PR | Lol i
PU(R: )= - IV G V)( < ) @.5)

Notice that the dipole depends on one director A,.

Quadrupole (22-pole)

Consider two dipoles, the first dipole as given above, and the second one obtained from the
first by displacing it a distance /7, and reversing the position of the charges (see Appendix A)
so that —e, ¢, —e and e located at 7y, 7+ Lii}, Po+ Ll + lyny and Fy+ Lh#i,, 'respectively, Define
the

Strength of the quadrupole = el /, 4.6)
Moment of the quadrupole Q =§l§ Y e “@n
Q=08 iy + i) 48)

where the charges and their corresponding position vectors are listed in Appendix A.

4
Potential due to non-ideal dipole = Y ¢;(P). (4.82)
i=]

To find the potential due to an ideal quadrupole, let e > =, [, -0, /-0 such that hm ehh=

(finite). The limit of (4.8a) leads to e
B°(E: i, i) = + L (n, V) (- V) [_tere;’"] 4.9)
In a similar manner one obtains
Po(Rif, ) = = 7L PG - - V)[ —¢ m]. 4.10)

Equations (4.9)and {4.10} define the potential and the polarization vector due to a quadrupole
located at the origin in an infinite dielectric solid. Notice that the quadrupole depends on two
directors, i, and A,.

Octapole

An octapole consists of two quadrupoles, the first as given above and the second obtained
from the first by displacing it through a distance /; and interchanging positions of the charges
(Appendix A).

Strength of the octapole = el 1f;. @1

The eight charges —¢, e, —e, ¢, —¢, ¢, —e, e are located respectively at iy, 7o+ hii), Fo+ Liii, +
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L.
8
Moment of the octapole U= 31 > errr; (4.12)
1
which upon substituting into (4.12) for charges and their position vectors becomes
U= —‘3—‘(ﬁ|ﬁ2ﬁ3+ Aafishy + A3y A,). 4.13)

The potential of an arbitrary point P due to a non-ideal octapole is

Z é(P). 4.14)

Potential due to an ideal octapole is determined by taking the limit of (4.14) as e~»xand /,, f, I
each tending to zero, such that el,/,/; remains finite (= 9°) resulting in expressions for the
potential and polarization vectors due to an octapole located at the origin in the form

-1 - - -
6% (53 iy iy ) = + 7 SN DNy - V) - V)

x(1+1},;"‘”)

Poe (s iy iy ) = = 9 1L 90 - 9 - )y - 9)

x(l - ;'R"). @.15)

Notice that the octapole depends on three directors, A, A, and 7;.
The corresponding expressions for dielectric displacements due to a unipole (2°~pole), dipole
(2-pole), quadrupole (2°-pole) and octapole (2>~pole) are obtained from the relation

D=P-¢V¢ (4.16)
and are found to be
D(5)= eV (%); D5 = - 9496, ) (3 ) (4.17ab)
Do(x; Ay, iy = - $9V(#, - V), V) (%) (4.17¢)
D% (%; iy, iy, y) = — S0, - )y - VYA, - W) (}t) (.17d)

The potential, polarization and dielectric displacement vectors due to higher order sin-
gularities can be constructed in a similar manner.

5. SPHEROIDAL CAVITY .
Consider an infinite isotropic centro-symmetric dielectric solid with a prolate spheroidal
cavity centered at the origin whose surface S is defined by

2
5-,+£z,=l, P=y*+2%, a=bh. (5.1
at ' b
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The focal length, 2¢, and eccentricity e are related by
c=vV(a*-b)=ae, 0=<e<], (5.2)

For a rigid dielectric in which the polarization gradient effects are negligible, one is interested in
determining the dielectric displacement field such that it satisfies

(a) Maxwell’s equation

v-D=0 (5.3)
(b) Boundary condition
n-D=i-d (5.4)
where
d = (do+ dix)E, + dyé,
and
A= \/(a’bl-ae’xT) ("E’ 9 —y 2ot _272 éz) 5.5)

is a unit vector normal to the surface of the cavity and &, é,, é, are unit vectors in the direction
of the coordinate axes and d,, d,, d, are arbitrary constants.

(c) and the vanishing of the dielectric displacement at infinity.

Guided by the structure of the solutions derived in{1-3] construct the solution to eqn (5.3)
and (5.4) by considering a point charge singularity with constant density, a dipole singularity
with /i, = é,, &, and a density = c?— £, a quadrupole singularity with i, = A, = &, and density =
(c?— ¢ distributed along the line segment ( — ae, 0) to (ae,0) on the x-axis between the focii of
‘the spheroid. Assume the solution in the form of an integral representation as

b =- [ 1A 5~ B+ A D - E et - )

+ A DR -E e - )+ AD(R-E 6, e )cT - EP)d ¢ (5.6)

Y-AXIS

v

~ae, N
( o) (oe,0) o x-AXIS
Z-AXIS
PROLATE SPHEROID: 2o 12—?3 s1, aab
3 b ’

Fig. 1. Line segment for singularities distribution: ( ~ ae,0)<(ae.0).
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where £=¢é, and AJ(i = 1,2,3,4) are arbitrary constants to be determined from the boundary
conditions. _

Substituting for D*(% - £, D*(% - £;¢,), D*(% - £;¢,) and D%(% - §; ¢, ¢é,), eqn (5.6) may be
rewritten as

b=V [A +ALC- ) S r A -pr +A4<c—§2) ](,;)df 6.7

where R =[(x — £+ y*+ 2°]'2 and we have assumed that e = §¢ = 99 = ¥ =
The boundary condition (5.4) assumes the form

bla 2 PRI
T(a- Fldex + i+ df1 - &)ly] = ..2, Al (5.8)
where
L=0i-¥) [ J:-I;—‘d g] (5.92)
L=(i-) [ j_ -2 (1—;;) d g] (5.9b)
V= (i ) U (* -gz)*—-,( ) g] (5.9)
w=G-9[[ (c2~f’)%(%£)d£]- (5.9d)

Detailed evaluation of the integrals I; (i = 1-4) is given in Appendix C which on the surface of a
spheroid become

= bla 2e
h= V(a* - e'x?) [1-&] (5.10a)
= 2bla _ 2e
12_+\/(a’-e2x2)[ L+1_e2]" (5.10b)
;/n’?l—rr[(u ~4e- Tzi,)( a’+3x2)] (5.100)
bla 1 2e
Ii= \/(a2 efﬁl)[ <+L 4¢+-i——-i)y] (5.10d)

Substituting from (5.10) into (5.8), and comparing coefficients of 1, x, y, x2, one obtains a linear
system of algebraic equations leading to

-1 -
Al—*g[l—i%z] d, A=+ ‘;[ L"’_zii] (5.11a)

-1
Ay= ‘;' [3L de - ]i,] : A4—dz[+L 4e+rzi,] (5.11b)
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thus determining, explicitly, the expression for the dielectric displacement as

D(x) = V[B oA, = 2B, 1A, - y(c*Bsg— B3 )As~ 4(c*B1o— 3By 1) As]

R
-V{{A; ~2xA; = 22¢* - 6x* + 9 A; + yAl] log-}-z-z-—f;.—;%
+2R, - R)A-30x - Al - A RiR, [if—cuiiﬁ]m} 6.12)

where B,, with its recurrence formulae and evaluations on the surface of the spheroid are
given in Appendix B.

Total surface charge
The total charge C on the surface of the spheroid is given by
2 — gyt
c= blag {“"" * ‘i'/’;a;“ _f’:‘,;,)‘ Yy ] ds. 6.13)
s

Using a parametric representation for the surface S of a spheroid
x=cép, y+iz=cV(E-11-n))e® (5.149)
~1=s9sl, 05052y, 0<{é<w

and £= § on S, one finds

a=ctn b=cVB-1, c=ae, e=%; .15
F= C{ém VI{EE- DV - nP)cos 8, Vg~ 1) VI~ n¥sin 3} (5.16)
ds= -‘?-ix"’ dn do=a/(1 - ) V(1 - én?) dnde 617

resulting in an expression for C on the surface of the spheroid as

C... ab! fz [ ! [d n } d a,qz } d2 \/(‘ 7)2) oS 0] d,n de..,‘h’ u)(] EZ)d
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APPENDIX A

The unipole, dipole, quadrupole and octapole, together with the position vectors of the locations of their charges are

listed below.
(A) Unipole (2°-pole) consists of a single point charge.

I
!

(e.7y)

(b) Dipole (2'-pole) consists of two point charges.

2
| 2
) i
(- eh) (efg+11A)) | Iy
(¢) Quadrupole (2*-pole) consists of four point charges.
I 2 3 2 Iky 3
Lo ! : l
(~efo) (efp+ i) (~ e+ Ly + hity)
4 UL
|
(C,fo+ Izﬁz)
(d) Octapole (2’-pole) consists of eight point charges.
l 2 3 4 5
! ! l !
(- eip) (efo+ 1) (- efy+ 1+ hiy) (efy+ hity) (- efy+ LA+ bty
6 7 8
! !
(C.Fo + I|ﬁ| + Izﬁz + Ijﬁg) (- C.Fo + Izﬁz + ’3ﬁ3) (c,fo + I,ﬁj)
6 7
)
8
hity
2 ih2 3
L
I 4
APPENDIX B

The form of B,... its recurrence formula and some commonly used results are given below:
Bm.n =f ilTu'fndfv R%:(x-f)!‘”{
—cRY?

Recurrence Formula:

LEg] L -
B"M=——c-—(—l—_—_’+(-;,l—_)y)+£f!2'8n—2a-2+xgnﬁ—l- nz2

m-2 Rz R]

Differential Relations:

a

x Byn==m[xBpi2n = Bmizn+1]

(B1)

(B2)

(B3)
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a
'3; Byn==mrBp.sa

Some Evaluations:

Ri~x-c
B|g-lﬁg""“‘_—:‘_
R| T+

Biy=Ri-Ri+xBio

)+ 3324"23— By +x B;;

]
‘“

i
wfu
=
xﬁ-
3

+
wf
-
gﬂ -

where
=l(x+ e+ PR, Ry=[(x=~cP+ "
P=y+2
On the Surface of the Spheroid:
P=(i-eNat~x), Ri=ater, Ry=a-ex

B{o— ’Og'l"‘!"—' L

2e’x
BS& “_!2)(02 gxl) Bﬂ (- Cz)(ﬂz‘fl 2)
2,3

Byg-Br= - L+-I%f?

01By-xBy, = AL 26)- FOL-de - 1253

a‘c’Bm- XCZBM - Q:Bn + XB;; = g2 ("' L +‘l'§£;'§) +x? (3L —4e ""_"““5

a’c’srxc*sﬂua’ssﬁxswmif’;?

1
a*c2 By~ xc*By; ~ a®Byy + xBgy = x [ ‘“‘“‘8‘“5“;!‘5 2; ‘(li‘gi;i]

APPENDIXC

Evaluation of Integrals I, (/ = -4} on S.
(a) The integral I;:

L=G-9 'R‘d

$5 Vol. 17, No. 2-E

207

(B4)

{85

(B6}

(B7)

(B8)

(B9)

31

{B11)

(B12)

(B13)
(Bi3a)

(Bi4}

(BIS)

(B16)

(B17)

(BI8)

(B19}

(B20)

(821

(822

1)
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Making use of the result

) . a ,

Ao f(x - 68, + vé, + 1) = m{ @’ - x¢] €
hla
/r=-mlﬂ By - xByyl. (C3)
Substituting from (B17) into (C3), one oblains
____ bla 2e
h= \/(a’«e’x’)[l-fz]‘ (€4
{b) The integral I,:

L=ti-9) { ] ‘-l (i)dg} (€5)

2 - ox Rg , '

Since (d/ax) (1/R;) = — (3] 3¢) (1/R), integrating by parts, we find
unfi-og]” o Eul
5L (V) {(c f}R‘ 6-_(-4- -r&df

=27 -©) -ﬁ—df* 2bla J (a’- fx)f

Viai-eix?)
____2Ma i L
—m(a By~ xBy] C6)

where (C2) was used.
Substituting from (B16,17) into (C6), one finds

____ 2bla { _ 2 }
h= T~ L —a(* €nH
(c) The integral Iy;
- 3 32 1
- 2ty {1
=(f V}j_c (¢ f)azz (Rg)dé (C8)

Integrating by parts twice and using the result (C2), there resuits

Y . - 2
bla zJ {a fx)(r 38 de (C9)

3 \/(02 e?:

Making use of (B19) and (B20}, one obtains
hla 22 g(3L - g0 - 25, ]
L= W[(h aj(JL 4¢ l-—ez) . (Cl0)
(d) The integral I:

i L (o2 z_‘_]
l= (i V’ayf_, [t o)

V’(; biaeyxz {T}_ﬁ {c*Asg— Ay~ Ha P By~ xc* By~ a*Bn + 3853)} 1y

which, on S becomes
~blay { 4¢’ 1 (. 2e ] 5
== (I~e’)’+t-—e’( L+i-—ez) €1

where we have used (B18) and (B21}).



